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Conflict, whether it be between persons, small groups, organizations,

or nation-states, can be understood to exist on a var;ety of levels.

Perhaps the most extreme or intense level of conflict exists when the

parties to the conflict see their own goals as absolutely incompatible

with the goals o: their opponents. Such a level of conflict can be

described in terms of an indivisible payoff structure (Phillips and

Nitz, 1968; Witz and Phillips, 1%69), -An ireivisible pa'Yoff structure

differs from a zero-sum or even a constant-sum situation. It implies a

situation in which at most one party can achieve its objective and in

which all partes ma" fall to do so. The spectre of two nuclear powers

involved in an altercation in which u,.: seeks to establish a world-wide

"Iworkers' revolution" while the other sets about to "make the world safe

for Democracy is an example of this Intense leve' of co-flict of colossal,

and terrifying, proportions. A more mundane example would be t'V two

19th century nobelmen who set out on a chilly morning each to "satisfy

his honor" with a dueling pistol. It is, in fact, the duel that provides

the prototype of conflict 4ith indivisible payoffs.

In turning our attention to the study of such a situation, as a

distinct form of conflict, we do not mean to suggest that there Is anything

inevitable about it. lie do suggest, however, that in a period of escalating

conflict there always exists the pnssibility that goals will be redefined

in such a way as to produce t:,is indivisibility. Ue further suggest that,

faced with an.apparebtly lndivislblepajoff structure, It is usually

possible to find alternatives that mediate the conflict, The analysis of
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this latter process, however, is a problem of negotiation and bargaining

Swh'-h we propose to defer in this paper. Thus, the scope of the present

undertaking will be restricted to an analysis of the dynamics of conflict

under an indivisible payoff structure.

Given this restriction the analysis of the two-person situation--the

duel--is rather trivial. The two participants simply exchange attacks

until either (1) ohe wins and the other loses, (2) both are unable to

continue (i.e., both lose), or (3) the conditions of conflict are

mediated and the situation changes. Less trivial is the analysis of the

n-person situation (n >2), or n-uel.

The present paper focuses upon what we have called uelative conflict.

This term refers to the type of conflict present in an n-uel. We will

first discuss the laboratory simulation of uelative conflict, and then

develop a mathematical model for strategy selection under uelative

conditions. This model is based on factors inherent in the structure

of power relations and on psychological assumptions about the dynamics

of interaction under these conditions. The model will ther, be restricted

to several special cases and these compared with empirical data.

Laboratory Simulation of Uelative Conflict

Although it is doubtful if pure uelative conflict has ever existed

between nation states, it can be argued that certain states of affairs

(e.g., war) bear a strong re•semblance to it. lioreover, potential

uelative conflict may very well exist at all times. The problem of

how a potential uelative situation moves to a purely uelative conflict

is one that we hope to deal with In subsequent work. At present, however,

we restrict ourselves to the pure case. Since 'real-world" examples of
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pure uelative conf!ict are infrequent and do not readily lend themselves

to analysis, we have turned to the psychological laboratory where such

conflicts can be created or simulated.

There has been a modest effort in recent years to develop laboratory

simulations of uelative conflict. The studies by Cole (196"',), Cole

and Phillips (1907) and .!illis and Long (0967) provide a paradigm for

the study of the three person form of uelative conflict--a truel. This paradigm

employs three persons as subjects or participants n' a simple game which

can easily be generalized to an n-person game. In this qare, each

participant is assigned a number of m3rkers or points, as well as a certain

capability for destroying t,'_ markers of his opponents. Each playsr has

some defensive capability. These various capabi'lties are designated the

resources of each player. The ooject of the game is for each player to

retain some of his markers after his opponents markers have been co,.letely

destroyei If there are n players in the game, there are n + I possible

outcomes:. n outcomes in which scme single player wins and one outcome

in which all players lose.

The resot-rces of the players can he broken down into four independent

resource dimensions. For purposes of the subsequent development of

the model, we now present formal definitions of these dimensions.

Definition 1. For any player, X, let D(X) represent the damage

player X can inflict on any given player given a successful

attack. In terms of the n-uel paradigm, .(X) is the number

of markers that player X can destroy in a single turn. It

is assumed that 0() 0, for all .

Definition 2. For any player, X, let L(X) be the probabil;ty

that player • will be successful in ladnching an attack
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wtven he chooses tc do so. it is ass-z-aJ that L(X)> 0 for

at) X.

The resources 9(X) and L(X) taken together constitute the offersive

capability of player X. The two dimensions of reources that constitu.te

the defensive capability of playe- X can be sna!chgausly defined.

Definition 3. For any player, X, tet R(X) be- the amount of

thosa resources controlled by playe.r Y' taE determine the

number of successful attacks he cin survive, RMX) des,'gates

the numbe" of markers that ;•ayer X has at any given tiiw.

It is assumed that R(X)>0 for alt X.

Definition 4. For any player, X, let 11X) be the probability

that player X intercepts an atrack rhat ;c; directed at

him and thus renders the attack u.nuccassfu;. It Is

assumed that I(x) c1.

In the laboratory simulation as emp!oyed by role 0368) and by

Cole and Phillips (1967), subjects playe'v the oqn- for a nvirber of tur',s

or trials until at leas two of the thre2 were el.minated.e ,nce a

player was eliminated he could no longer atnack, I.e., ii R(X) * 0, X was

not a participant in the gaw'e.

The following s.,;tlon presents .no. m;e) for uelotive copflict amona

three players. This model is Intended to account for the interaczion ih,

the laboratory's simulation. To the extent that this simulation reflects

processes which are operative in other situations, such as ;ntern;,Otonal

interaction, the model may be useful as a guide to research and the

formation of policy.



The ,Model

Although, in the extended form of the truel, it may be necessary

to conduct several trials to determine the outcome, the model which is

proposed treats each trial as a game in normal form, that is, each

trial Is treatod as if it were a game in itself. 11here it is relevant,

however, the number of moves that a participant will last if he is

attacked by one of the other participants is used by the model (see

definition number 6).

Definitions

", The first four definitions have already been given. Definitions

5, 6, and 7 are given below.

Definition 5. Let S(x,Y) be the probability that player X

successfully completes an attack on player Y. This is

determined by multiplyiig the probability that player X

successfully launches the attack by the probability that

player Y does not intercept the attack. s(X,Y) = [L(X)] [!-I(Y)].

Definition 6. Let n(X,Y) be the expected number of attacks it

takes for player X to eliminate player Y. To determine

n(X,Y) it is necessary to compute the ratio of resources

controlled by player Y to the amount of damage which player

X can inflict times the probability that player X will be

successful in inflicting that damage on player Y.

n(X,Y) R(Y)

D(X) s(x,v)

Definition 7. Let P(X,Y) = the probability that player X will

attack player Y.



Assumptions

(1) One of the factors which Influences each participant's attack

choice Is his vulnerability to each of the other participants. This

factor will be referred to as V(X,Y) and is inversely proportional to

n(Y,X). Thus, as the number of moves required for player Y to eliminate

player X increases, the vulnerability of player X to player Y decreases.

V(X,Y) - Ki ,where KI is a constant.

n(YX)

(2) A second factor which influences the participants attack choices

Is the attack potential of the participants which is referred to as

A(X,Y). The attack potential of player X to player Y is directly

proportional to the damage player X can inflict on player Y times the

probability that player X will be successful in Inflicting that damage.

A(X,Y) - K2D(X)S(X,Y).

(3) In order to predict the probability that any of the participants

will attack one of the other participants it Is necessary to compute the

relative threats of the participants involved. The simple threat of

player X to player Y [TQ(X,Y)] is directly proportional to the attack

potential of player X to player Y and the -ilnerability of player Y to

player X. It Is inversely prorortional to the vulrerability of player

X to player Y.

T (X,Y) - [ K3 ] V(YX)A(X,Y)
0 ~VKxY)

T (X,Y) - [ K3  KI ] K D(X)S(X,Y)
0 Ki/n(Y,X) '-ntY

To (X,Y) - [ n(Y,X)D(X)S(XY) [KK 2 K-3Sn(x,Y) "KI

!K



Letting K- K2K3 we have,

-XY K[ ~ 1 x) D(X)S(X,Y)
R(Y)

D(X)S(X,Y)

- K R(X)D(X) 
2S(X 

v)2

Similarly,

T 0 (Y,X) - K -R(Y)D (y)2S(y PX)2

T (Z,X) - K R(Z)D(Z) 2S(Z,X)2
0 R(X)D(X)S(X,Z)

T0 (X,Z) aK R(X)D)(X) 2S(XZ)2

R(y)()2(y,Z)
2

To (vZ) K R(Y)D Z)S(ZY)

T 'ŽvY) aK R(Z)D (Z)2S(Z y)2

o R(Y)D(Y)sTY- -F

(4) The simple probability that playe, X will attack player Y Is

equal to the ratio of the threat of player Y to player X [T 0 (Y,X)] to the

total threat to player X [To (Y,X) + To (7,xW.

P 0(X y) - To (v'x)
To (Y,X) + To, MR,)

Similarly,

P 0 Cx, v) = To (Y'x)

P0 Cv ,x) + T0 (Z

PO (x,z) - 1-P 0 (x,v)

P 0 ('x) = i-P0 (Y,Z)

P 0 (z'v) = I-P (zQ'x)
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To clarify the model given above we will discuss an example given

by Shubik (1954). Shubik considered a truel in which each of the three

participants (A, B, and C) fired one shot at one of the other two

participants. The strength of each participant was determined by his

probability of hitting his target. The respective strengths were:

A = 0.8; B = 0.7; and C = 0.6. Shubik considered the case in which

f successive firing order was randomly determined. There were six equally

t probable firing orders. Assuming that the stronger of the two attack

alternatives (that is, the participant who posed the greatest threat

to a person's survival) would be attacked with probability one by each

of the participants, Shubik determined that, averaged cver the six firing

orders, A's chances of survival were 0.260, B's chances of survival

were 0.488, and C's chances of survival were 0.820. Thus, the poorest

shot had the best chance to survive. This phenomena was referred to

as "strength through weakness" by Shubik. lle will apply our model to

the Shubik example with one modification; the firing order will not

be considered due to our assumption of simultaneous attacks rather

than the successive attacks assumed by Shubik.

The first step in applying our model to Shubik's examole is to

determine the offensive and defensive capabilities for each of the

participants. Shubik's "probability of hitting the target" is equivalent

to the launch probability in the present model, so the following values

are appropriate.

Person A Person C Person C

D(A) = I D(B) - I D(C) - I

L(A) - .8 L(B) - .7 L(C) = .6
R(A) = 1 R(B) = I R(B) = I
I(A) = 0 I(B) = 0 I(B) - 0



From the above definitions we computed the following probabilities

of each participant successfully completing an attack on each of the

other participants.

S(A, 5) = S(A, C) = .n
S(B, A) = S(B, C) = .7
s(c, A) = s(c, B) = .6

Using the formulas which were given in Assumption 3, the following

simple threats were computed.

To (A, B) =K R(A) ,)MA)2 S(.,B) 2
TO (A B) KRT-"DTB) $(B,A)

(I) (1)2 (.8)2 K
(!) (1) (.7)

= .64 K
.7

.915 K

T0 (A, C) = 1.068 K

T (B, A) - .(I13 K

T (B, C) = .817 K
0

T (C, A) = .450 Ko

T0 (C, B) = .514 K

The simple probabilities of attack as computed from the formulas In

Assumption 4 are:

P (A, B)= T0 (BA)
o T0(B,A) + To?'C-,AT

- .613K
.613K + .4;OK

= .577

P (A,C) = .423

Po(D,A) = .641
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P (8, c) = .3590

Po(C, A) - .567

Po (C, B) = .4 33

The probability of survival obviously depends upon the attack

probabilities. If we denote the probability of a successful attack on X

by Y as

P (Y,X)

then

%;, survives) = I - [P'(Y,X) + P'(Z,X) - P'(Y,X)P'(Z,X)]

Thus,

P(A surviving) = I - H(.449) + (.340) - (.148)] = .359

P(9 surviving) - I - U(.462) + (2.60) - (.120)] = .398

P(C surviving) = i - U(.338) + (.251) - (.035)] = .496

The model concurs with the prediction of "strength through weakness"

as proposed by Shubik (1954), however, the "strength through weakness'

effect as predicted by the model is much weaker than was pred'zted by

Shubik. The difference between Shubik's predictions and the model's

predictions follows from the differential probabilities of attacking the

person who poses the greatest threat to one's survival as well as from

the assumption of simultaneous rather than surccessive attacks. Shubik

assumes that each person will attack the person who poses the greatest

threat to his survival with probability one. Our model, on the other

hand, assumes that each person will consider the contribution to the

total threat against him which is associated with each of the other

participants, and that the probability of attacking a given participant

varies directly with the propcrtion of the total threat contributed by

that participant,



As they are stated, both Shubik's interpretation and the model's

interpretation of strategy selection i-. the truel assume a rational

approach. The difference between the two interpretations is merely that

each assumes a different decision rule. Both are subject to the criticirm

that the decision rule that they propose oversimplifies the situation

considerably. Realizing the appropriateness of this criticism and that

in fact such simple decision rules overlook the psycholbgical processes

present within the situation, we extended the model to include the

cognitive processes employed in strategy selection.

The extension of the model Incorporates the probability of bein9

attacked Into the determination of the threat. Thus, the simple threat

as proposed previously is modified by the subjective probability of being

attacked. This modification is given in definition 3 and assumption 5

below.

Definition 8. For every pair of players, X and Y, let Py,o(X,ý) be

Y's subjective probability of being attacked by X.

Assumption 5. The (once) revised threat of player X to player Y

is equal to the product of the simple threat of player X to

player Y and player Y's subjective probability of being

attacked by player X. Simbolically:

TJ(X,Y) = To(X,Y) )y,o(X,Y)

The introduction of subjective probabilities raises the question of

how those subjective probabiliti3s are determined. This question can

be partitioned into two questions: (1) how does a player determine

subjective probabilities for his own prospective action and (2) how does

a player determine subjective probabilities for the prospective action
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of others? Our answers to these questions are given in assumptions 6

and 7 below.

Assumption 6. Any player, X, knows, without error, his own attack

probabilities.

Thus:

40x,o(XY) = P o(XY).

Assumption 7. Any player expects that for any two players, X and Y,

the probability that Y attacks X will be directly proportionate

to the probability that X attacks Y. In other words, each

player assumes reciprocity with respect to attacks between any

two players. From the standpoint of player X. this means

0x'olz"x) -Ox,o(x,z) axlZ'x)'

Px,o(Y,Z) -'x,o(ZY) ax(y,z),

where ai(Y,X), a x(Z,X) and a (Y,Z) are the coefficients of

proportionality.

It can be shown that so long as the objective attack probabilities are

all less than one and greater than zero, the coefficients of proportionality

can be chosen so as to make the subjective probabilities equal to the

objective attack probabilities. It is of interest, however, to make a

somewfat different assumption about these coefficients.

Assumption 3. For any player, X, the subjective probability of

being attacked by any other player, Y, is equal to the

probability with which X will attack Y. Clearly, the implica-

tions for the coefficients of proportionality are

01x(Y,X) = x(Z,X) = I
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Assumption 8 has consequences for the coefficient of propertionality

ax(Y,Z). Before discussing these consequences, it is necessary to make

clear the meaning of a coefficient of proportionality. If, for example,

Gx(Y,Z) - 1, then player X expects Y and Z to play a tit-for-tat strategy

against each other, that is, Y and Z may be said to behave according to

some rule or norm of perfect reciprocation. If 3x(Y,Z)< 1, then player X

assumes thet player Y will under-reciprocate attacks from Z, that is, Y

will attack Z less frequently than Z attacks Y. On the other hand, if

a x(Y,Z) >4, then player X assumes over-reciprocation by Y against Z.

Thus, assumption 8 simply reflects the hypothesis that any player expects

perfect reciprocation between himself and any other player. Theorem I

details the determinants of ax(Y,Z).

Theorem 1. The coefficient of proportionality, ax(Y,Z), is equal

to the ratio of the probability that player X attacks player Z

to the probability that player X attacks player Y. That is

S(Y,Z) .P(XZ)

Proof: From assumption 7 we have

(l1 4 x,o(YZ) 2, qn,o(Z,Y) ax(YZ) which implies

(2) ax(Y,Z) - Px~o(YZ)
@x,o (Z~y).

Since 0x,o(YZ) = I - (xo(Y,X) and Ox,o(Z,Y) = 1 - 4 x,o(Z,X) we

have:

(3) ax(V,Z) I 'P.o(Y,X)

From assumption 7, this becomes

(4) c (Y,Z) - l-I' 0 (x,Y) tx(Y,X)
x4Px,o(X,Z) ax(ZX)



which, in virtue of assumption 8 simplifies to
1-0 (XY)

ax(Y,Z) 4 Xo

xO

Assumption 6 allows us to replace subjective probabilities with

objective probabilities as follows:
(-P (XY) P (XZ)

(6) ax(Y,Z) = 0

I-P (XZ) Po(X,Y)

and the theorem is proved.

Assumptions 5 - 8 allow us to caluclate revised threat values. Since

those values differ to some extent from the simple threat values, and since

the attack probabilities were determined by the simple threat values, it

Is necessary to derive revised attack probabilities. These revised

probabilities, although dependent upon the revised threat values, can be

expressed In terms of simple threats, as in theorem 2.

Theorem 2. The (once) revised pro)bability of player X attacking

player Y, denoted PI(X,Y) is given by the following equation:

PI(X'Y) = T0 (YvX) 2

0 (YX) +, T0(ZX)-

Proof:: By extension of assumption 4

S~(I) P fZ,) . TI(YMX

Y- -Y WW-ýT (Z , X)

From assumption 5 we can re-write expression (1) as follows:

(2) PI(X,V) - T0 (Y'X)0ix'o(Y'X)

which, in virtue of assumpLions 6, 7, and 8 yields

(3) PI(X'Y) To0 %Y,X) Po(XY))P0 -- - ToZ X ,z
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Assumption 4 gives the simple attack probabilities in terms of

simple threats. 1Jhen those are substituted here we have:T Yx)2
:•To (Y,X+ OZ

(4) PI(X,Y) - T4,YX)

T(Y ,X)2 + To(Z,X)'

To(Y,X) + To(ZX) To(Y,X) + To(Z,X)

which reduces to:

(5) PI(XY) __T°(YX)2

2 +T 2
To(Y,X) + To(ZX)

and the theorem is proved.

The model can be further extended along the same lines. The rationale

for this extension is the ascription to the participants In uelative conflict

of an active reflective process. This process results in a modification

of the subjective probabilities which, in turn, modify the threats and

thus the attack probabilities. In order to achieve this extension, we

restate assumptions 4, 5, 6, and 7 below.

Assumption 4 . The probability that player X will attack player Y

is ;qual to the ratio of the threat of player Y to player X

to the total threat to player X. Symbolically:

Pn(XY) - Tn(YX)

Tn(YX) + T (ZX)n

Assumption 5 • The nth revised threat of player X to player Y Is

equal to the product of the (n-I)th revised threat of player X

to player Y and player Y's'(n-l)th revision of his subjective
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probability of being attacked by player X. Symbolically:

T (X,Y) - Tn_.(XY) Oy,n-l(X,Y).

Assumption 6*. Any player, X, knows his own attack probabilities.

Thus xn(XY) = P (XY)
x,nn

Assumption 1*. Each player assumes reciprocity with respect to attacks

between any two players. From the standpoint of player X, this

means
OXn(YX) ,,( x• (XY)a (Y,X),

4 (z,x) = c) (x,z)a (z,x),
x,n x,n x

SI(YZ) -• (ZY)e (Y,Z).

xn x,n x

Since it will be useful to have access to subjective-objective

probability conversion expressions, we provide them below without proof.

Lemma I. Conversion expressions for subjective probabilities are

0) (X,Y) = P (X,Y)
xn n

S(YX) = P (X,Y)
xpn n

4 (x,z) = P (x,z)
x,n n

*• (z,x) = P (xz).
xn n

We now state a theorem which allows the nth revised attack

probabilities to be calculated from the simple threats.

Theorem 3. The nth revised probability of player X attacking player Y is

n
T (y,X) 2

P (X,Y)- o
n 2n

ToYX +- T (Z.,x) 2 n
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Proof (by induction): It has been shown in theorem 2 that the

general formula holds for one reflective cycle. Assume it is true for

n-I reflective cycles, that is: 2 n-I
T (Y,X) T (YX)

(1) P (X,Y)= n-I o 0Sn-I ToYX2n12.

Tn (YX)+T (,X) +T (Z,X)(
n-l n-l 0 (0x 2  sr(~)

From assumption 5 we have

(2) Tn(YX) - Tn-i(YX) "y,n-l (Y,X) and

Tn(Z,X) - TnI(Z,X) (y'n-I(Z,X).

Expression (2) can be rewritten as

(3) T n(Y,X) - T 1(YX) P (X,Y)

Tn (Z,X) - Tn.I(ZX) Pn-I(X'Z) using Lemma 1.

Combining expressions (1) and (3) Into the form of assumption 4 yields

(4) n-lT (oYX22
T 0 (YX) 2

TxY)X) T0 (Y,X) 2  +To(ZX)2

- / To(YX) 2n-)+ T (Z,X) 2 n-l To (ZX) )

Sn-l n-f o -I,-
(Y,X)2 +T (Z,X) 2  , To(Y,X)2 +To(ZX)2 5

Expression (4) can be simplified to

(5) 2n-l 2n-I

P (x, v) 
[To(YX) I] [To(YX) ]

n n-I n-) n-I
(To(Y,X)2  ] [To(Y,X) 2  3 + [To(Z , X) I (To(Z,X) 2  I

or,,al ternatively



n-I 18
(6) ,~ x ,) -[To(Y,X)

2  J2
[To(YX)2n-I 2 , ]2

[T0(vX)
2 n] + [To(Z'.X) 2 j2

which ,s just n

(7) P (X,Y) - 0

To(Y,X) + To(Z,X)
2

and the theorem is proved.

We shall be interested in obtaining asymptotic values of P (X,Y) as
n

the active reflective process continues indefinitely. To facilitate this

result, we state the following corollary:

Corollary 1. An alternative expression for Pn(X,Y) is given by

P (x,Y)- 1
n !- To(ZX) ,

I+ L TolYX)

Theorem 4. As the active reflective process continues indefinitely, any

player, X, attacks that player who constltutes the greatdr'simple threat

to him with probability I and that player who constttutes the lesser

simple threat to him with probability zero. If both of X's opponents

are equal in simple threat, he attacks each with probability 1/2.

Proof: There are three cases.

Case I. Assume that player Z constitutes a

greater simple threat to player X than does

player Y, i.e.,

To(Z,X)> To(YX).

In this case, we know that

T (Z,X)0

-- > I

T (YX)
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Taking the limit of P (x,Y) as n grows indefinitely large we obtain

vrn P (Xy) = = 0

l"himToT(ZX)) 2n

IT (Y,x)

Case II. Assume that player Y constitutes a greater simple threat

to player X than does player Z. Under this assumption it must

be true that
T (Z,X)

< 1.

To(YX)

Taking the limit of P (X,Y) under this assumption yieldsn

lim P (XY) 1 =.n-

i T0 (Z,X) 2

n+ uin
_ To(Y,X) J

Case III. Assume that T (Z,X) = To(Y,X). This implies that

T (Y,X)

If we take the limit of P (X,Y) we have

I X- - i 2 n = 1/2
1 T (ZX)

I+lim 0

n
T (Y,X)

anc. the theorem is proved.
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Experiment 1

The initial test of the model employed the truel as an experimental

paradigm because it is the simplest nontrivial n-uel. Three experimental

manipulations were conducted. The first manipulation held R(X), L(X),

and I(X) constant and varied D(X) such that situations ranging from a

situation in which D(A) = D(8) = D(C)--the all equal point--to a

situation in which one player had complete control of the outcome--the

dictator situation--were tested. The second manipulation held D(X),

L(X), and I(X) constant and varied R(X) such that situations ranging

from the all equal pcint to the dictator situation were tested. The

third manipulation held D(X), R(X), and I(X) constant and variud L(X)

such that situations ranging from the all equal point to a situation

in which one player had an obvious advantage with respect to the probability

of successfully completing an attack were examined. Due to the

probabilistic nature of the third manipulation it was not feasible to

manipulate the situation such that one player had complete control

over the outcome. The three manipulations and the procedures and

results associated with each one will be presented separately as experi-

ments ]a, lb, and lc.

Experiment la

Subjects. Forty-five male and forty-five female undergraduate

volunteers from an introductory psychology class at Michigan State

University were the subjects in this experiment. They received two

extra credit points in the course for their participation.

Apparatus. The apparatus consisted of 90 white poker chips and

three wooden tokens one marked A, one marked B, and one marked C.
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Special attack choice slips were provided and clipboards were provided

to allow attack choices to remain secret until all three players had

made their attack. A cylindrical urn that measured 2 3/8 inches in

diameter and 4 inches tall and that had an internal baffle was used for

the random selection of player position for each game.

Procedure. Fifteen all male and fifteen all female triads

participated in the experiment. Each triad played five games in which

D(X) for each of the three participants (Player A, Player B, and Player C)

was assigned as indicated in Table 1. All of the games were played in a

Insert Table I about here

fare-to-face situation and the order in which the games were played was

randomly determined for each triad. The position that each subject played

was determined randomly for each game. Before each game, each subject

drew a token (marked either A, B, or C) from an urn and played the game

in the position indicated on that token.

The structure of the 6'slc garre was as follows. Each of the players

began each game with 30 poker chips [R(A) - R(B) - R(C) - 301. The

probability of intercepting an attack [I(X)] was 0.0 and the probability

of launching an attack [L(X)] was 1.0 for all of tVe players in all of

the games. The rules of the game required that each player remove

a given number of chips (see Table 1) from one of the other two players

zn each move. To remove chips each player circled the letter of the

pleyer he wished to attack on an attack choice slip and passed it to

the experimenter. After the experimenter had received attack choice

slips from all three players on each move, the players were told who had



TABLE I

D(A), D(B), and D(C) for the Five Game Types in Experiment la

1

Game Type

_ - _ 1 2 3 4 5

D(A) 6 7 8 9 I1

D(B) 6 6 6 6 6

D(C) 6 5 4 3 1

•Note.--The five distributions of D(X) were selected to regulate
game length and to test the model in situations ranging from
the all equal situation--the 6/6/6 game--to a situation in which
one player had dictatorial powers--the 11/6/1 game.
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attacked whom and the number of chips .. tamining was appropriately

adjusted. Thus, the moves in the game were simultaneous. The chips

that were taken away, were taken out of the game and did not belong

to any of the players. The winner of each game %as that player who

had points remaining when the other players' points were gone, that is

he was the sole survivor. If there was no sole survivor, there was no

winner.

Each of the subjects was required to fill out a pre-game questionnaire

before each of the five games. The form of the questionnaire follows:

Game Exr-iment
Pre-game QL sonnaire

Before you draw to determine which of you will play in which position,
I would like you to enswer the following question.

I. VJhich player would you choose to be if you had your choice?

A B C No preference
(circle one)

In addition, each of the players filled out a iost-game questionnaire

following the five games. Th! follnwing nire! questions were asked on

that questionnaire.
1. Did you know anything about the experiment before you Lame in

the room? If so, what?

2. How would you rate toe length of the game?

I 2 3 4 5

too short too long

3. How interesting was the qame?

1 2 3 4 5
very dull very interesting

4. 11as the game fair? If not, please state your reasons.

5. How easy waý it to understand the rules of the game?

1 2 3 4 5
very easy very difficult



23

6. How hard did you try to win?

1 2 3 4 5
not at all very hard

7 Did you know either of the other two players before today?
If you did, how well did you know him?

1 2 3 4 5
not at all very hard

3. Which player would you rather be?

A B C No Preference
(circle one)

9. What did you think I was trying to study with this experiment?

After the subjects had completed the post-game questionnaire, they were

thoroughly debriefed.

Results. 0,s a preliminary test of the model, we will concentrate on the

initial attack. Thus, until it is stated otherwise, all data discussed will be

attacks on the first move (-' the game. Figure I indicates the predicted probab-

ilities of each player attacking the stronger of his two opponents as a function

Insert Figure I about here

of D(X) for n reflective cycles. It is obvious from Figure I that the predicted

probabilities of attack asymptote at 1.0 after a small number of reflective cycles.

Figure 2 reports the observed probability of attack as compared to the predicted

probability of attack as a function of D(X) on the initial trial of all game

types.

Insert Figure 2 about here

I
S•



Fig gure I.

Predicted probabilitics oF cch pl'yer attmicking the stronqcr

of his two opponents as i function of D(X) for 'n' reflective cycles.
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Fiqure 2.

Observed and predicted probabilities of each player ittacking

the stronger of his two opponents is a function of D(X) .nd 'n' reflective cycles.
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The predicted probabilities of attack were obtained using the average number

of reflective cycles associated with Players A, B, and C for game types two

through five. The n's were computed by'using Theorem 3 and substituting the

observed probability of attack for the predicted probability of attack. Since

the appropriate simple threats could be computed, the matter of solving for n,

the only parameter, was easily performed. Such a procedure may seem inappropriate,

because we are forced to assunw that a player can use a fraction of a reflective

cycle. However, it is reasonable for some subset of the players to utilize

j reflective cycles while some other subset of players considers i reflective

cycles. The result is some number of reflective cycles n which is composed of

the weighted average of j and i.

Examination of figure 2 indicates that the model does not accurately

predict attack choices on the initial move of a truel in which D(X) is manipulated.

However, there are indications that the assumptions underlying the model may in

fact be acceptable. Further discussion.of thewlnadequaeles-of the model will be

discussed in conjunction with the results of the experiments lb and lc. We

will now turn to the data obtained from all of the moves in each game type.

Figure 3 reports the observed and predicted probabilities of each player

attacking the stronger of his two opponents as a function of D(X) and n reflec-

tive cycles for each move of game types 6/6/6, 7/6/5, 8/6/4, 9/6/3, and 11/6/I

respectively. The number of relfective cycles associated with each player in

each game type was computed by determining the exact number of reflective cycles

which predicted each move for each player in each game type and determining the

mean number of reflective cycles for each player across all moves for each game

type. Any move with less than twenty subjects ( i.e., N < 20) was excluded.

The product-moment correlations between the predicted and observed values arc

presented in Table 2.
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Insert Figure 3 and Table 2 about here

Experiment lb

Subjects. Ninety male and ninety female undergraduate students from

an introductory psychology class at Michigan State University were the subjects

in this experiment. They received extra credit in the course for their

participation.

Apparatus,. The apparatus for this experiment was identical to the

apparatus used in experiment Ia.

Procedure. Thirty all male and thirty all female triads were formed.

Each triad played four games in which R(X) for each of the three participants

(Player A, Player B, and Player C) was assigned as indtcated in Table 3.

Fifteen male triads and fifteen female triads played game types 1, 3, 5, and 7;

Insert Table 3 about here

fifteen male triads played game types I, 2, 4, and 6; fifteen female triads

played game types 2, 4, 6, and 8 in those orders. As was the case in experiment

Ia, all of the games were played in a facc-to-face situation. The position

that each subject played in each game was randomly determined by the same method

used in experiment la.

The structure of the basic game was as follows. Each of the players begin

each game with R(X) determined by the game type that they were playing (see

Table 3). The probability of launching an attack [L(X)] was 1.0 for a!! 3f the

players in all of the games. Except for the fact that each player removed only

one chip on each move [D(A) - D(B) - D(C) I]. the rules of the game were

A~
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Figure 3.

Observed and predicted probabilities of eich player attacking

the stronger of his two opponents as a function of move number and 'n' reflective

cycles with the 6/6/6 [D(X)] game type ,appearing in "a", 716/5 in "b", 8/6/4

in "c", 9/6/3 in "d", and 11/6/1 in "e".
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TABLE 2

Prodict-Moment Correlations between Predicted and Observed Probabilities

of Each Player Attacking the Stronger of his Two Opponents for Each Game

Type in Experiment lb

Game Type

Player 1 2 1 4 5

A .72 .75 .98 .88 .42

B .32 .82 .97 -. 27 .70

C .83 .93 .65 -. 24 -. 70

I_ _ _ _ __



Li TABLE 3

R(A), R(B), and R(C) for the Eight Game Types in Experiment lb

Game Type

1 2 3 4 5 6 7 8

R(A) 9 10 11 12 13 14 15 16

R(B) 9 9 9 9 9 9 9 9

R(C) 9 8 7 (1 5 4 3 2

*Note.--The eight distributions of R(X) were selected to
regulate game length and to test the model in situations
ranging from the all equal situation--the 9/9/9 game--to
a situation in which one player had dictatorial powers--
the 16/9/2 game.

?A
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identical to the rules governing the game in experiment la.

Results. As was the case In experiment la, in this experiment, we first

considered only attack data from the initial move of the game. Figure 4 indicates

the predicted probabilities of each player attacking the stronger of his two

opponents as a function of R(X) for n reflective cycles.

Insert Figure 4 about hereI
Figure 5 reports the observed probability of attack as compared to the

predicted probability of attack as a function of R(X). The number of reflective

Insert Figure 5 about here

cycles was computed in the same manner that it was computed in experiment la.

The n's that were computed for each player position in each of the game types

two through eight, were summed and divided by seven. The resulting moan n

for each player position was used to determine the predicted probabilities of

attack in all gjame types.

Figure 6 reports the observed and predicted probabilities of e~ch

player attacking th- stronger of his two opponents as a function of R(X)

Insert FIqure 6 about here

and n reflective cycles for each move of game types 9/9/9, 10/9/8, 11/9/7,

12/9/6, 13/915, 14/9/4, and 15/9/3 respectively. The number of reflective cycles

was computed as it was in experiment ]a. Any move with N < 20 was excluded.

Table 4 presents the product-moment correlations between the observed and predicted

probibilities.



Figure 4.

Predicted probabilities of each player attacking the stronger

of his two opponents as a function of R(X) for 'n' reflective cycles.

35
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Figure' 5.

Observed and predicted probabilities of each player attacking

the stronger of his two opponents as a function of R(X) with 'n' reflective cycles.
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Figure 6.

Observed and predicted probabilities of each player attacking

the stronger of his two opponents as a function of move number and 'n' reflective

cycles with the 9/9/9 (R(X)] game type appearing in "a", 10/9/8 in "b",

11/9/7 in "c", 12/9/6 in "d", 13/9/5 in "e" 14/9/4 in "f", and 15/9/3 in "

0I
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Insert Table 4 about here

Experiment Ic

Subjects. Forty-five male and forty-five female undergraduate volunteers

from an introductory psychology course at Michigan State University were the

subjects in this experiment. They received extra credit in the course for

their participation.

Apparatus. The basic apparatus for this experiment was identical to

the apparatus used in experiments la and lb. In addition, due to the probabilis-

tic nature of the present experiment, three sdmpling urns were used. The

sampling urns were cylindrical and measured 1 1/4 inch in diameter and 2 1/4

inches in height. Each urn contained a total of 10 balls approximately 1/8

inch in diameter. Each urn had a clear plastic bubble on top which was con-

structed so that when the urn was turned upside down, one of the ten balls would

fall into the bubble.

Procedure. Fifteen all male and fifteen all female triads participated

in the experiment. Each triad played five games in which L(X) for each of

the three participants (Player A, Player B, and Player C) was assigned as

indicated in Table 5. All of the games were played in a face-to-face situation

and the order in which the games were played was randomly determined for each

trial. The position that each subject played was determined by the same method

Insert Table 5 about here

that was used in experiments la and lb.

STne structure of the b -sic game was as follows. Each of the playcrs began



TABLE 4

Product-Moment Corrviations betwccn Predictcd 1nd Observcd ProbabilitieŽs

of Each Player Attacking thv Stronger of his Two Opnonents for Each Game

Siyp in Experiment lb

Game Typu

Player 1 2 3 4 5 6 7

A .56 .70 .06 .51 -. 04 .46 -. 68

BB .34 .66 .16 .32 .07 -. 14 .05

C .57 .53 .71 .78 -. 07 .81 -. 78

_ _ _ _ _ _.. . ..__ __4 -



TABLE 5

L(A), L(B), and L(C) for the Five Game Types in Experiment Ic

Gamc Type

1 2 3 4 5

L(A) .6 .7 .3 .9 1.0

L(B) .6 .6 .6 .6 .6

L(C) 1 .6 ,.5 .4 .3 .2

*Note.--The five distributions of L(X) were selected to allow

a test of the model in a variety of situations in which the
predicted outcomes are similar to the predicted outcomes in
experiments la and lb.
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each game with 6 poke,- chips [R(A) = R(B) - R(C) = 61. The probability of

intercepting an attack [I(X)] was 0.0 and each player could remove 1 chip on

-a successful attack [D(A) = D(B) = D(C) = 11. L(X) was varied according to a

prearranged schedule (see Table 5). The rules of the game were ioenticil to

the rules governing the game in experiment la with one modific tion. After all

three players had made their attack choices, they were required to turn their

sampling urn ever so that a ball appeared in the plnstic bubble. If a white

ball appeared, the attack was successful. If a black bill appeared, the attack

was unsuccessful. The ratio of black and white balls in each players' sampling

urn was manipulated to follow the schedule of L(X) indicated in Table 5. In

addition, the probabilistic nature of the game reqjired that each game be played

until one or none of the players survived. This resulted from the fact that when

two players had chips remaining it was not possible to predict the winner.

Results. In this experiment, as was the case previously, we examined the

attack data from the initial move. Figure 7 indicates the predicted probabilities

of each player attacking the stronger of his two opponents as a function of L(X)

Insert Figure 7 about here

for n reflective cycles,

Figure 8 reports the observed probability of attack is compared to the

predicted probabilities of attack as a function of L(X),

Insert Figure 8 about hero

The number of reflective cycles was computed as ic was in experiments la and

lb. The observed and predicted probabilities of ench player attacking the stronger



Figure 7.

Predicted probabilities of each player ittacking the stronger

of his two opponents as .a function of L(X) for 'n' reflective cycles.
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Figurc 8.

Observed and r-edicted probabilities of each player attacking

the stronger of his two opponents .ns a function of L(X) with 'n' reflective cycles.
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of his two opponents as a function of L(X) and n reflective cycles for each

move of game types .6/.6/.6, .7/.6/.5, .8/.6/.5, .9/.6/.3, and 1.0/.6/.2

respectively are presented in Figure 9. The number of reflective cycles was

computed as ;t was in experiments la and lb. Any move for which N < 20

Insert Figure 9 about here

was not included. Table 6 reports the product-moment correlations between

the predicted and observed probabilities.

Insert Table 6 about here

Discussion of Experiment I

The correspondence between the theoretical curves and the observed data from

Experiment I leaves a great deal to be desired. There are, however, a number of

factors which should be noted in evaluating the fit of the model to the data. The

model makes certain assumptions about the motives of the subjects, that is, that

each subject seeks to be the sole survivor and that, foiling to survive, each

subject is indifferent to all possible outcomes. This assumption implies that



Figure 9.

Observed 3nd predicted probabilities of each player attacking

the stronger of his two opponents as a function of move number and 'n' reflective

cycles with the .6/.6/.6 [L(X)] game type appearing in "a", .7/.6/.5 in "b",

.3/.6/.4 in "c", .91.6/.3 in "d", ano 1.0/.6/.2 in "e".
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TABLE 6

Product-Homent Correlations between Predicted ind Observed Probabilities

of Each PRtyer Attacking the Stronger of his Two Opponents for Each Game

Typo in Experiment Ic

Game Tyn.,

Player 1 2 3 4 5

A .43 .26 .42 -. 43 -. 14

B .01 .20 .07 .09 .60

C .40 .42 .51 .28 .34

5

I,
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the subjects have an appropriate understanding of the game. Moreover, the

modei ignores certain variables such as retaliation and the attrbbution of

personal characteristics. These assumptions may be considered more as boundry

conditions of the model than as substantive assumptions to be tested. Thus,

it is important to consider the degree to which these conditions were met in

Experiment 1 and how any failure to meet these conditions should effect the

evaluation of the model.

On the whole, subjects did appear highly motivated to win the games.

This is consistent both with the manner in which they played and with their

post-experiment comments, despite the fact that no monetary incentive was pro-

vided. However, a number of subjects indicated a preference for being the

second player eliminated, i.e., for achieving second place, despite the fact

that a pre-condition of uelative conflict is that losing is losing. There is,

moreover, some evidence to indicate that subjects did not fully understand the

game. For example, consider figure 2. In the 11/6/1 game, the strongest

player, (Player A) is assured of winning if he attacks the intermediate player

(Playwr B) every time. As is apparent in figure 2, A attacked B less than 90%

of the time in this situation. Moreover, in n study conducted subsequent to the

present one, Hirtman (1970) demonstrated a statistically significant change in

the probability of attacking the stronger player after the first few games.

Since subjects in Experiment I played only a few games, it may be that a sub-

stantial part of the data reflects relatively uninformed decisions, Further,

this experiment was conducted in a face-to-face situation which would allow

subjects to real iaLe against a given player in a given game for some action

taken by that player in a prior game, The model clearly does not take such a

contingency into considcra~ion.

Given the above remarks, the relatively poor fit of the mo(el to the, dat.'
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from Experiment I can be more appropriately interpreted. Consider first the

initial trial data presented in figures 2, 5, and 8. In figure 2, two of the

three graphs show an excellent r3nk-order correlation between observed and pre-

dicted data points. In figure 5, two 6f the three graphs show acceptable fit and

t:- sam, is true in figure 8. Thus, given the possible sources of departure

from boundry conditions, the model appears to provide a reasonable and encoura-

ging fit to-the initial trial Jata.

To the extent t.et the experimental conditions. in Experiment I may have

diverged from the boundry conditions of the model, this divergence might be

expected to effect the latter moves in a game more seriously than the Initial

trial. This is the case because of the Increased likelihood of retaliation

effects and because whatever temptation there may have been to play for "second

place" would have been more pronounced on later moves.

Reference to figure 3 indicates a surprisingly good correspondence between

predicted and observed values over trials for the games In Experiment la. Of

the 15 product-moment correlations between predicted and observed values in

Table 2, 10 are greater than or equal to .65, and 6 are greater than .80. Four

of the five lowest correlations occurred in the two games with the greatest

disparity of resources. In these games, subjects tended to under-ittack their

s+-r'r'r attack choice. This fin'ling is consistent with the ;revilus comments

about lack of understanding ' the game.

A similar pattern emerge in figure 6, although the correspondence between

predicted and observed values was considerably poorer in Experiment lb. Of

the 21 product-moment correlations (Table 4), only five are larger than .65.

The five lowest correlations occurred in the three games with the greatest

disparity of resources; and particularly with respect to Player A--the strongest

member of the triad--theru was a marked tendency to unJer-attack the stronger

71.
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attack choice. As in Experiment la, this could be accounted for by an insufficient

understanding of valid winning strategies.

The fit of the model to over-trials data was poorest in Experiment Ic as

is indicated by figure 9 and Table 6, All of the 15 correlations were less than

.65. The post-experimental comments of the subjects in this experiment indicated

that they had failed to appreciate the nature of the probabilistic resource

dimension (launch capability) that was varied in Experiment lc.

On the whole, the results reported above, while in no way constituting

adequate support for the model, seem to be influenced by a failure to meet the

boundry conditions of the.model in the experimental conditions. It is recognized

that methodological apologies do not provide a very satisfactory substitute

for a demonstrated correspondence between theory and data. It was with this

in mind that Experiment 2 was designed.

Experiment 2

Subjects. Thc subjects were four male and two female undergraduates who

were paid $1.50 per hour plus bonuses to participate in the experiment.

Apparatus. A talbe divider was used to control the non-face-to-face aspect

of the game. It was designed to divide a 2 1/3' X 5' table into four sections

so that the subjects could not see each other or the experimenter. One I X 4

inch slot in the bottom of each of the dividers between tho subjects and the

experimenter was provided for written communication.

A 12" X 36" scoreboard was mounted on the wall behind the experimenter

in full view of the subjects, Each subject's score was kept by sliding billiard

markers on 1/8 rods behind 1 18 X 12' cover such that the markers that remained

visible indicated the subjectq' score at any given point in the game, For cise

in calculating the score the markers were placed in I sequence of four white and

one black marker, There were a total of thirty markers for each subject,

I Im



Procedure. Four male and two female undergraduates were hired to partici-

Spate in the experiment. Two triads each composed of one female and two males

were formed. Each triad was composed of the same players for the duration of

the experiment which consisted of five three hour game playing sessions over a

three week period. The games were played in a non-face-to-face situation with

no communication allowed between subjects.

The true] paradigm described in experiment I was used in the present

experiment, In every game R(X) was thirty points, I(x) was 0.0, and L(x) was

1.0 for all three players. The six different distributions of D(X) reported

in Table 4 were examined. R(X) and the six distributions of D(X) were chosen

to regulate the length of the game and to allow an evaluation of the nodel in

Insert Table 7 about here

situations ranging from an all equal situation -- the 6/6/6 qame type -- to a

situation in which one player had dictatorial power -- the ;./6/1 game type.

Each subject was assigned a name" or !:bel in each set. In addition, the labels

VAF, ZEJ, AND YOV were counterbalanced on the scoreboard such that each label

was associated with the top, middle, or bottom row of points nri equal nuiber

of times, The subjects were issigned to pns;t;ons around the gai:c divider for

each set of thirty-six games. Each subject occupied each of the three positionis

an equal number of times.

On each move of the game, each plnyer circled the labe'l of the player

hv wished to attack on 3n ittack choice slip ind passed it to the experimenter.

After the experimenter had ruckivcd attack choices from ill thre:e players

on ech m•ve, the players were told whii had attacked whoe and R(X) was appro-

"priately aWjust(ea For .;ach playcr. Thus, roc moves in the? garm_ were. simultanuous.



TABLE 7

D(A), D(B), and D(C) and the Number of Games

r Played for the Six Game Types in Experiment 2

Game Type

1 .... 2 3 4 5 6

D(A) 6 7 8 9 tO tt

o(s) 6 6 6 6 6 6

D(C) 6 5 4 3 2 1

N of Games
Played 110 86 84 83 48 47

I
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The winner of each game was that player who had points remaining when the other

p;ayers' points were gone, that is, he was the sole survivor. If there was no

sole survivor there was no winner.

One point was given to the winning player in each game. After two sessions

(approximately 80 games) the number of points accumulated by each player was

totaled and in one triad the player with the most points was given a twelve

dollar bonus in addition to his hourly wage. The other two members of the triad

received only their hourly wage. In the other triad, the players divided a

nine dollar bonus in direct proportion to the ratio of the number of points they

had accumulated to the total number of points accumulated.

Results. Since there were no differences as a function of the way the

bonuses were determined and there were no individual or sex differences, the

data were colla2sed and examined as a function of D(X) and game type.

Figure 10 presents this comparison for each of the three power positions

in Experiment 2. The three values of n were estimated by solving for n for each

power position in each game type and by averaging over game types to obtain a

value of n for each power position. In this procedure, the 6/6/6 data was not

included because the predicted probability of ottack does not change as a func-

tion of number of ruflective cycles, The 10/6/2 d3t3 was also omitted because

the number of reflective cycles 3ssociated with P(B,.\) for this game was undefined.

Insert Figure 10 about here

Figure 11 presents a comparison of the prediction of the model and observed

over-trials data. Of the 18 product-moment correlations presented in Table. 8,

12 were higher than •65 and 10 were higher than .80,



f

Figuru 10.

Observed and predicted probabilities of each player aitackir.q

the stronger of his two opponents as : function of D(X) and 'n' reflective cycles,

Q
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Insert Figure 11 about here

Insert Table 8 about here

A 3 x 4 factorial analysis of variance with repeated measures on one factor

S and with one observation per cell was computed on the data in Table 9. Table

SlO-reports the-su ummery ;of thatiaip alySis. There was a significant "endency for

the number of reflective cycles to decrease as the disparity of D(X) between

* player positions increased (F = 42.50, p < .001). In addition, a significant

propensity for each player position (0, B, and C) to consider a eifferential number

Insert Table 9 about here

Insert Table 10 about here

of reflective cycles (F - 34.83, p <.001) was indicated. An examination of

Figure 11 indicates that the difference associated with playcr position results

from a tendency for Player C to consider more reflective cycles than both

Players A and B., There is no difference between Players A and B.

Discussion of Experiment 2

The results of Experiment 2 provide at least a partial validation of the

methodological crticisms of Experiment 1. When care was taken (a) to provide

subjects with sufficient experience to fully understand the game, (b), to pro-

vide the monetary incentive to establish the equivalence of all losing outcomes,



Figure !1.

Observed and predicted probabilities of cch playcr attacking

- the stronger of his two opponents as - function of move number and 'n' reflective

cycles with the 6/616 [R(X)] game type ippearing in ".a", 7/6/5 in "b", 8/6/4

in "c", 9/6/3 in "d:n, 10/6/2 in "e", and 11/6/1 in "f'.
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TABLE 8

Product-Moment Correlations between Predicted and Observed ProbabillLies

of Each Player Attacking the Stronger of his Two Opponents for Each Game

Type in Experiment 2

Game Type

Player 2 3 4 6

A -. 49 .99 .96 .77 .83 -. 99

B .67 .94 .85 .88 .81 .18

C .43 .98 .42 .88 1.00 -. 80
I. ,___________________ _______________________________,______________

fI,



TABLE 9

Number of Reflective Cycles Across Player Position and Game Type

Vlayer
D(A) D(B) D(C) A B C

7 6 5 2.4 2.0 3.4

8 6 4 1.4 1.7 2.5

9 6 3 0.4 0.8 2.2

11 6 1 0.1 0.0 1.4



TABLE 10

Sufimrary Table for the 3 x 4 Factorial Analysis of Variance

Source SS df MS F

Game Type 7.64 3 2.55 42.50* ,

Player Position 4.18 2 2.09 34.83*

Error .34 6 .06

Total 12.16 11

1Note.--Since the analysis of variance had only one observation
per cell the interaction term was used as the error term.

*p < .001
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- and (c) to eliminate cues of personal characteristics and information allowinq

for inter-game retaliation, the co,-respondence between theoretical and observed

values was greatly enhanced. Figure 10 shows an excellent fit between [redicted

and cbserved initial attack probabilities.

Despite the very encouraging results of Experiment 2, we would be mistaken

at this point to make anything but very modest claims for the validity or

heuristic valuc of the model., What has emerged from the empirical work of

this paper is a conclusion that further tests of the modul are warrinted.

Uelative conflict as we have characterized it in this piper, stands in

the shadows of virtually all other conflict. While it emerges only infrequently

or in a limited form, its existence influences attempts at the resolution of

conflict. Thus, a better understanding of the nature of uclative conflict

would seem to be essential to the manragement of canflict in less intense

situations. This paper is intended to be a step in the direction of that

understanding.

I/
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